## The Pythagorean Theorem and its Converse

## ythagorean Triples

A *Pythagorean triple* is a set of positive integers that when substituted for a, b, and c in the equation,  $a^2 + b^2 = c^2$ , make the equation true. To form a Pythagorean triple, choose any two positive integers U and V, U > V.

Let 
$$a = U^2 - V^2$$
  
 $b = 2UV$   
 $c = U^2 + V^2$ 



For each given value of U and V, fill in the appropriate column in the table below.

|   |   | A           | В   | C           |             |       |
|---|---|-------------|-----|-------------|-------------|-------|
| U | V | $U^2 - V^2$ | 2UV | $U^2 + V^2$ | $A^2 + B^2$ | $C^2$ |
| 2 | 1 | 3           | 4   | .5          | 25          | 25    |
| 4 | 1 | 15          | 8   | 17          | 289         | 289   |
| 6 | 1 | 35          | 14  | 49          | 14.21       | 1421  |
| 8 | 1 | 63          | 16  | 65          | 4225        | 4225  |
| 3 | 2 | 5           | 12  | 13          | 169         | 169   |
| 5 | 2 | 21          | 20  | 29          | 841         | 841   |
| 7 | 2 | 45          | 28  | 5.3         | 2809        | 2809  |
| 9 | 2 | 77          | 36  | 85          | 7225        | 7225  |
| 4 | 3 | 7           | 24  | 75          | 625         | 625   |
| 8 | 3 | 55          | 48  | 73          | 5329        | 5329  |

## Some Challenges:

a. Consider the numbers 51, 140, 149 which form a Pythagorean Triple. What values of U and V give this triple?

Write a Pythagorean Triple in which the middle number is 56. 33, 56, 65

c. Write a Pythagorean Triple in which the smallest number is 69. 69. 260, 269

Examining the other uses of Pythagoreans Theorem

If  $a^2 + b^2 = c^2$  then the triangle is a right triangle.



If  $a^2 + b^2 < c^2$  then the triangle is an obtuse triangle.



If  $a^2 + b^2 > c^2$  then the triangle is an acute triangle.



The lengths of the sides of a triangle are given. Classify the triangle as acute, right, or obtuse.

1. 
$$4,5,6$$
 (ACUTE)  
 $4^{2}+5^{2}$   $6^{2}$   
 $16+25$   $36$   
 $41 \rightarrow 36$   
4.  $\sqrt{3},2,3$  OBTUSE

4. 
$$\sqrt{3}$$
, 2, 3 OBTUSE
$$(\sqrt{3})^{2} + 2^{2} + 3^{2}$$

$$3 + 4 + 9$$

$$7 + 9$$

2. 
$$0.3, 0.4, 0.6$$
 OBTUS
$$.3^{2} + .4^{2} .6^{2}$$

$$.09 + .16 .36$$

$$.25 \angle .36$$

5. 
$$30,40,50$$
 RIGHT
$$30^{2}+40^{2} 50^{2}$$

$$900+1600 2500$$

$$2500 = 2500$$



1. In the diagram below of  $\triangle ADB$ , m  $\angle BDA = 90$ ,  $AD = 5\sqrt{2}$ , and  $AB = 2\sqrt{15}$ . What is the gth of BD?



2. An overhead view of a revolving door is shown in the accompanying diagram. Each panel is 1.5 meters wide. What is the approximate width of d, the opening from B to C to the nearest hundredth of a meter?



- 3. Which set of numbers does not represent the sides of a right triangle?

- (1) {6, 8, 10} (2) {8, 15, 17} (3) {8, 24, 25} (4) {15, 36, 39}
- 4. The set of integers {3,4,5} is a Pythagorean triple. Another such set is

- $(1) \{6, 7, 8\} \qquad (2) \{6, 8, 12\} \qquad (3) \{6, 12, 13\} \qquad (4) \{8, 15, 17\}$
- 5. Which set of numbers could be the lengths of the sides of a right triangle?

  - $(1) \{10, 24, 26\} \qquad (2) \{12, 16, 30\} \qquad (3) \{3, 4, 6\} \qquad (4) \{4, 7, 8\}$

6. The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13, the altitude is x + 7, and the base is 2x. What is the length of the base?



7. As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are x inches, and the vertical support bar is (x + 1) inches. What is the measure, in inches, of the vertical support bar?



1. In the diagram below of  $\triangle ADB$ , m  $\angle BDA = 90$ ,  $AD = 5\sqrt{2}$ , and  $AB = 2\sqrt{15}$ . What is the igth of BD?





2. An overhead view of a revolving door is shown in the accompanying diagram. Each panel is 1.5 meters wide. What is the approximate width of d, the opening from B to C to the nearest hundredth of a meter?





- 3. Which set of numbers does not represent the sides of a right triangle?

  - (1) { 6, 8, 10 } (2) { 8, 15, 17 }
- (3) {8, 24, 25} (4) {15, 36, 39}
- 4. The set of integers {3,4,5} is a Pythagorean triple. Another such set is
- (1) {6, 7, 8} (2) {6, 8, 12} (3) {6, 12, 13}
- (4)<sup>'</sup>){ 8, 15, 17 }
- 5. Which set of numbers could be the lengths of the sides of a right triangle?
  - - { 10, 24, 26 } (2) { 12, 16, 30 } (3) { 3, 4, 6 } (4) { 4, 7, 8 }

6. The diagram below shows a pennant in the shape of an isosceles triangle. The equal sides each measure 13, the altitude is x + 7, and the base is 2x. What is the length of the base?

$$x^{2} + (x^{2} + 7)^{2} = 13^{2}$$

$$x^{2} + x^{2} + 14x + 49 = 169$$

$$2x^{2} + 14x - 120 = 0$$

$$2(x^{2} + 7x - 60) = 0$$

$$2(x^{2} + 7x - 60) = 0$$

$$2(x + 12xx - 5) = 0$$

$$x + 12xx - 5 = 0$$

$$x = 12$$

$$x = 5$$



7. As shown in the diagram below, a kite needs a vertical and a horizontal support bar attached at opposite corners. The upper edges of the kite are 7 inches, the side edges are x inches, and the vertical support bar is (x + 1) inches. What is the measure, in inches, of the vertical support bar?

$$7^{2} + x^{2} = (x+1)^{2}$$

$$49 + x^{2} = x^{2} + 2x + 1$$

$$49 = 2x + 1$$

$$\frac{48}{2} = \frac{7}{2}$$

$$1241 = x$$

